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Raising and lowering operators for u,(n) 
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Abstract After reviewing the defining relalions for the q-algebra un(n), we COIIS~NC~ a 
Cartan-Weyl basis and list the q-commutation relations of its generators. We then use the 
latter to explicitly CODStNCt sets of raising and lowering operators for the canonical chain 
of 9-algebras un(n)  3 uq(n-l),  generalizing those introduced by Nagel and Moshinsky 
for u(a) 3 u(n - 1). Finally, we give their normalition coefficients and show how 
the normalized operators can be used lo go from any Gel'fand-Tkeitlin basis state that 
is of highest weight in uq(n - 1) to any other one and ultimalely to COnStNCt the 
whole Gel'fand-Tseitlin basis from its highest-weight state. This paper both generalizes 
a previous work of Ueno et a1 on lowering operators and provides explicit expressions 
for their operators in terms of up(n) Gmn-Weyl generators. 

1. Introduction 

In recent years, there has been considerable interest in the so-called q-algebras or 
quantum groups U, (g), which are q-deformations of the universal enveloping algebra 
of the Lie algebras g (Jimbo 1985a, Drinfeld 1986). In the case where q is not a 
root of unity, it was proved by Lusztig (1988) and Rasso (1988) that for any finite- 
dimensional irreducible representation (irrep) of a simple Lie algebra g, there is an 
irrep of U, (9) that has the same dimension and the same weight spectrum, and so 
can be uniquely labelled by its highest weight. Hence the theory of q-algebra irreps 
bears much similarity to that of ordinary Lie algebras. 

In this paper, we shall be concerned with the unitary irreps of U, (n) f U, (U(.)) 
when q E I!%+ (the results presented here could however be easily extended to the case 
where q is a phase different from a root of unity). Such irreps can be characterized by 
a Young diagram [h,h, . . . h,], where hi, i = 1,. . . , n, are some integers satisfying 
the inequalities h,  3 h, 2 . . . > h,. One can define a basis of their carrier space, 
the so-called Gel'fand-'Reitlin (GT) basis (Gel'fand and Beitlin 1950), whose vectors 
are completely specified by the irreps of the q-subalgebras of u,(n) belonging to the 
canonical chain U, ( n )  3 U, (n - 1) 3 ' .  . 3 U?( 1) ( J i b 0  1985b, Ueno er a1 1989). 

Ueno et a1 (1989) showed that the GT basis can be constructed via a lowering 
operator method. Their operators are the q-analogues of the lowering operators that 
were introduced, together with raising operators, by Nagel and Moshinsky (1965a, b) 
to construct a GT basis for u(n) .  The Nagel-Moshinsky u(n)  3 u ( n  - 1) lowering 
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(resp. raising) operators are some functions of the generators of a U( n )  Cartan-Weyl 
basis that, when acting on any GT basis vector, lower (resp. raise) some component of 
its weight by one unit. Furthermore, they transform any semi-maximal cm state, i.e. 
any m basis vector that is of highest weight in u ( n  - l ) ,  into another semi-maximal 
m state. Hence, they enable one to obtain from the maximal or highest-weight 
state of a given irrep all the semi-maximal states belonging to its carrier space. By 
combining lowering operators of u ( n ) ,  u (n  - l ) ,  . . . , u(2), one can then construct 
the full set of GT basis vectors from the maximal one. 

The u q ( n )  3 uq( n - 1) lowering operators considered by Ueno el al (1989) were 
only inductively defined and were not expressed in terms of u,(n) generators. When 
dealing with applications of uq(n )  to physical models, it may be necessaly however to 
construct the GT basis vectors in explicit form. For such purpose, one needs to know 
the lowering operators as functions of the generators. The aim of the present paper is 
to determine such functions or, in other words, to provide an explicit solution to the 
Ucno et af recursion relations. In addition, a similar problem will be solved for the 
u,(n) 3 uq( n - 1 )  raising operators, which were not considered by these authors. 

In the following section, we review the defining relations for u,(n), construct a 
Cartan-Weyl basis and list the q-commutation relations of its generators. In section 3, 
we use the latter to explicitly construct sets of raising and lowering operators for 
u,(n)  3 U ( n  - 1) .  In section 4, we normalize these operators and use them to pass 

q .  from any semi-maximal GT basis vector to any other one. Finally, section 5 contains 
the conclusion. 

2. Cartan-Chevalley and Cartan-Weyl bases of u,(n) 

The u,(n) U,(u(n)) q-algebra, corresponding to a one-parameter deformation of 
the universal enveloping algebra of u(n) ,  is defined (Jimbo 1985a) as the associative 
algebra over C generated by I, E:, i = 1,2, .  . . , n, ,Tit1, E!,,, i = 1,2 , .  . . , n - 1, 
and the commutation relations 

[E;,E;] = 0 (2.14 

[E;,E;,,] = (Sitl - @)Ej,, 

[E;,E;+l] = (Sj  - Si+')E?+l I (2.lb) 

(2.lc) 

[E/+' ,  Eft,] = ,$[E: - E!+' % t l l  (2.ld) 

together with the quadratic and cubic q8erre relations given by 
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respectively. The definition of the algebra is completed by assuming the Hermiticity 
properties 

= E: = E!,, . (2.4) 
Note that in (23), [2] denotes a q-number, whose general definition is 

(2.5) 
This definition of q-numbers is extended to the commuting operators E: - E!:: 

The set of operators E:, E:+', and E:,, is the q-analogue of the Cartan- 
Chevalley basis of u(n). The operators E:, i = 1,2,. . . , n, are the weight 
generators, obtained by combining the generators of the su(n)  Cartan subalgebra 
E! I - Eft', r,l i = 1,2, .  . . , n - 1, with an additional commuting generator Cy=l E:. 
The operators E;+', i = 1, 2,. . . , n - 1, are the raising generators corresponding 
to the S U ( R )  simple roots a;, whereas E:,,, i = 1,2,. . . ,n - 1, are the lowering 
generators associated with the su(n)  roots -a;. 

To construct raising and lowering operators for U,(.), we shall need a q- 
analogue of the U( n) Cartan-Weyl basis E!, i, j = 1,2, . . . , n. So we have to 
introduce additional raising and lowering generators Eitp, E;+,, for p > 1. There 
exist various conventions for these operators in the literature (see e.g. Ross0 1989, 
Chakrabarti 1991). Here we shall make the same assumptions as in Quesne (1991) 
and define them recursively by 

in (21d). 

(2Q) i t P  = Eft', EftP] E; - [ , ,+* ~ i = l ,  ..., n - 2  p = 2  ,..., n - i  

E,",, E [ E ~ ~ ~ , E i t l ] q - ,  
in terms of q-commutators of the type 

i = 1,. . . , n - 2 p = 2, .  . . , n - i 

[ A ,  BIq. E A B  - qa l2BA = -qUI2 IB, AIq-* . 

[Ei+',Et:+2Iq-, = [ E!+Z Eft2 I 1, = 0 

[E:tz,E~tl]q = [E&,E:&, = 0. 

[E! ,Ei]  =6iE;-61Ei  ( q = l ) .  (29) 

(27) 
The cubic q-Serre relations (2.3) can then be expressed in the form of q-commutators 
as 

(2.W 

In the U(.) case, the Cartan-Weyl generators E{ satisfy the well known 
commutation relations 

The g-analogues of these relations can be written in terms of q-commutators (27). 
In their derivation, use is made of the most general form of the q-Jacobi identity 
(Chaichian et a1 1990) 

q"2[A,IB,Cl,.]q,-, + qc/2[B,[C,Al ,s]q.- .  + qa/ZIC,[A,Bl ,=]qb- .  = 0 (2.10) 

where a, b, c E R, and of a symmeby property of the Cartan-Weyl basis given in the 
following lemma: 
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Table 1. q-commutators of two raising generalon E;, EL or two lowering ones E;, E: 
in the case where 0 < j - i < I - k. 
Conditions qa [E:!E:l,. [E; $le 

i < j < k < I  1 0 0 
i < j = k < l  q E! - q 112 Ef 
i < k  < j < l  1 - (q1I2-y-W)E!EL - ( q l ~ * - q - ' ~ * ) E ~ E i  
i = k < j < I  q-' 0 0 
i = k < j = l  1 0 0 
k < i < j < l  1 0 0 
k < i < j = l  q 0 0 

112 E;E: (ql/z - q- l / z  E*E* k < i < l < j  1 ( - '1- ) 1 1 ,  

E: k < i = I < j q-l -q-112Ek 
k < l < i < i  1 0 0 

Lemma 21. The generators of the U,(.) Cartan-Weyl basis are such that 

(E i ) ;*q - t  - - E; (2.11) 

where, on the left-hand side, Hermitian conjugation is combined with the 
simultaneous change of q into p-'. 

Proof. Direct verification using (2.1)-(2.6). 0 

A first important result consists in a generalization of (2.6). 

Lemma 2.2. The additional generators (2.6) of the Cartan-Weyl basis satisfy the 
relations 

i = l ,  ..., n - 2  p = 2 ,  ..., n - i  (2.1%) i+P = E"+p Ef+P 
Ei - [ i I , + r l q  
E:,, [E::;, E:+?],-, i = 1,. .. , n  - 2  p = 2,. .. , n  - i (2.1%) 

for any T E {1,2,. . . , p -  1). 

Proof. Equation (Z.12a) is proved by induction over T by starting from T = 1, for 
which it coincides with definition (2 .6~) .  For such purpose, use is made of the q- 
Jacobi identity (2.10) for a = c = 1, b = 0, and of (2.2). Equation (2.1%) then 

We state the general results in the form of a theorem. 
follows from (2.11). 0 

Theorem 2.3. The U,(.) Cartan-Weyl generators E!, i, j = 1 , .  . . , n, satisfy the 
q-commutation relations given in tables 1, 2, and 

(2.13) [E: ,  E;] = (6; - 65) Et I 

as well as those that can be derived from table 1 by using (2.7). 

Proof. For k = j, j + 1, and j - 1, (2.13) reduces to (Z.la)-(2.lc). For k = j + p, 
p > 1, it can be proved by induction over p by using (2.10) with a = 1, b = e = 0. 
For the remaining values of k, use is made of lemma 2.1. 
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Table 2. Nonvanishing commutators of a raising generalor E:, i < j ,  with a lowering 
one EL, I ;  > 1. 
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Consider next the q-commutators given in table 1. One first notices that 
by successively using the symmetries mentioned in lemmas 2 2  and 23, the q- 
commutators of two lowering generators listed in column 4 can be derived from 
those of two raising generators listed in column 3. It then only remains to consider 
the latter, which can be rewritten as [Eitp, E:+'] ~ by setting j = i + p ,  E = R + r,  
where p < r. The demonsnation proceeds by a double induction over p and r, 
starting from p = r = 1, and is sketched in the appendix. 

Finally, the commutators listed in table 2 can be proved in a similar way. By 
setting j = i + p and k = 1 + r, they can be rewritten as E!+,]. By virtue of 
lemma 2.1, it is enough to consider the case p < r. One successively establishes the 
relations for p = 1 < r,  p = 2 < r, and 2 < p < r. Note that the case p = 1 < T is 
special and cannot serve as the starting point of the induction over p because some 

0 

9 

rows of table 2 disappear. 

Remark. Contrary to what happens in the U(.) case, some q-commutators (resp. 
commutators) of table 1 (resp. 2) are quadratic functions of the commuting Cartan- 
Weyl generators E!, E; or E?, Ef. As a matter of fact, by using (2.10) one can 
show that no value of a E iw can be found so that they become linear functions as in 
the Lie algebra case. 

3. Construction of raising and lowering operators 

For a %,(VI) unitary irrep characterized by its highest weight [h,h, . . . h,], where 
h,  2 h, 2 2 h,, the GT basis of its carrier space is specified by a set of integers 
h i j ,  1 4 i < j < n, such that hi, = hi, i = 1, .  . . , n, and 

hi,jtl  2 hi j  2 1 < i < j 4 n - 1. (3.1) 

They are arranged to form a triangular array, the GT pattern, so that the GT basis 
vectors are written as 



Ihi j )  

(3.5) 

( 3 4  

hl,  h2n ... hn-l,n 
h 1 , d  h+-,  ... h m - 2 , d  k - l q A - 1  

... 
hl, h22 

hll 

where, by virtue of (2&), the latter implies that 

In particular, the highest-weight state corresponds to ri = hi ,  i = 1,. . . ,n - 1, and 
will be denoted by I i;). 

It is possible to go from any semi-mawimal state to any other one contained in 
the same representation space by using lowering and raising operators. The latter are 
defined as follows: 
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Defutilion 3.1. A set of lowering operators L:, m = 1,2, .  . . ,n  - 1, for U,(.) 3 
~ ~ ( n - 1 )  is a set of functions of the U,(.) generators E { ,  i, j = 1,. . . ,n, satisfying 
the two conditions 

1 < i,m < n (3.8) 

(3.9) 

where 

is some normalization coefficient. A set of raising operators R;, m = 1,2 , .  . . ,n-1, 
is similarly defined by replacing (3.8)-(3.10) by 

[E:,R;] = 6 iRk  1 < i ,m  < n (3.11) 

(3.12) 

(3.13) 

respectively. 

Remarks. (1) Equation (3.8) (resp. (3.11)) means that L: (resp. R;) when acting 
on any GT state Ihij) of weight wi, 1 < i < n, given in ( 3 4 ,  with respect to U (n-l ) ,  
lowers (resp. raises) the mth component of the weight by 1, i.e. gives an irhitraty 
linear combination of GT states Ihij) of weight w: = w i  - 6;, (resp. TU: = w j  + 6;,), 
1 < i < n. Equation (3.9) (resp. (3.12)) imposes that whenever Ihij)  = It:), the 
lowered (resp. raised) weight TU; becomes the highest weight of a up(n - 1) irrep 
I T , .  . . r, - 1 . .  . rn-l] (resp. [ T ~ .  . . T, + 1.. .T,,-J). In other words, (3.9) and 
(3.12) are equivalent to the conditions 

l < j < n - l  (3.14) 

and 

respectively. 
(2) The sets of lowering and raising operators are not unique because from any 

lowering (resp. raising) operator one can construct another lowering (resp. raising) 
operator by adding terms containing raising generators on the right. 

(3) We do not demand that L; and Rk bepolynomia! funaions of the generators 
as is done for U(.). As we shall see below, in general they do not have such 
a property. We impose however as an extra condition that, in the limit q -+ 1, 
they go over into the polynomial functions constructed for u(n)  by Nagel and 
Moshmky (1965a, b). 
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Let us now mnstruct sets of raising and lowering operators. 

- 
Definition 3.2. Let the operators Lr, Lr, R:, E;, 1 < m < n, and R g ,  z.,', 
1 6 n' < m < n, be defined by 

n-m-1 n-1 P c 
p=U i , > i , - l > ~ ~ - > i t = m + l  

(3.16~) 

(3.17~) 

(3.176) 

(3.18a) 

(3.1%) 

m-n'-1 m-1 

q-&"../Z[&,J1 
j = n ' t l  

x EF'E~; 1, ... E~;-'E$ 1 < < 

where 

1 6 j , k  < n (3.19) ' k  &jjk = -&kj E; - E ,  + k - j 
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and we assume that 

(3.20) 

Remark. Note that from (3.&7), we obtain 

The operators just introduced satisfy various properties that we shall now proceed 
to list. We first state some preliminary results in the form of lemmas. 

Lemma 3.3. For any n' or n" in the range indicated, the opelators defined in 
(3.1&)-(3.186) satisfy the recursion relations 

(3.22a) 

(3.23a) 

1 < n' < n"< m < n (3.246) 
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respectively, where we define 

and 

(3.2%) 
(3.25b) 

(3.25) 

(3.25d) 

Proof. The demonstration is similar to that for the corresponding U( n) operators, 
except for the use of the q-commutation relations established in section 2 instead 
of (2.9). 0 

Remark. Note that in (3.23~) (resp. (3.23b)), the operators (3.17a) (resp. (3.176)) 
are expressed in terms of the operators (3.18~) (resp. (3.186)), in contrast to the 
remaining equations where the operators appearing on both sides belong to the same 
'ype. 

In addition, we have the following property: 

Lemma 3.4. The operators defined in (3.16)-(3.18) are such that 

L; = E;  R k = R k  l < m < n  (3.27~) 

R < = R :  l < n ' < m < n .  (3.27b) 

Proof. Choosing n' = n - 1, n' = 1, and n" = n'+ 1 in (3.22a), (3.23a), and (3.2aa) 
respectively, we obtain the recursion relations 

- 
- I  

l < m < n - 1  (3.28) 

1 < n'+ 1 < m < n .  

m - ES-ILm 
L n  - n n-l[&".n-ll - [ & m , n - l l L L E Y  
RZ = [&m~lRm En 1 9 'd2 - qE"'2E~R!,,[&ml] 1 < m < n (3.29) 

Rk = [&m,n,+~IRm fL'tlE7L' n ' t l  - En,+1 n' R~ '+ ' [ z  m m,n'+l 1 
(3.30) 

The same choices made in (3.22b), (3.236), and (3.246) lead to recursion relations 
coinciding with (3.28)-(3.30). Since, from (3.16) and (3.18), we get 

LZ+, = E:,, (3.31~) 

Gt1= E:,, (3.316) 

R2-I = E,"-' (3.31~) 
RE-1 = EZ-1 (3.31d) 

respectively, by induction it follows from (3.28), (3.30), and their analogues for E; 
and E< that equation (3.276) and the first part of (3.27~) are valid. The second part 
of the latter then results from (3.276) and the recursion relation (3.29) as well as its 
analogue for E:. 0 

We now state the main result of this section in the form of a theorem. 
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Theorem 3.5. The operators defined in (3.16) and (3.17) form sets of lowering and 
raising operators for uq(n)  respectively. 

Pro05 By virtue of Lemma 3.4, it is enough to show that the operators (3.16a) 
(resp. (3.17a)) satisfy (3.8) and (3.14) (resp. (3.11) and (3.15)). The first equation 
is obviously fulfilled, while the second can be proved in the same way as the 
corresponding result for u(n )  (Nagel and Moshinsly 1965a) by using the q- 
commutation relations of section 2. In addition, it is easy to check that, when q + 1, 
the operators (3.16) and (3.17) become the standard Nagel-Moshmsky operators. 0 

Remarks. (1) Although - they appear in the recursion relatiom, - (3.23) of the raising 
operators R; = E;, 1 < m < n, the operators R& = RZ, 1 Q n' < m < n, 
defined in (3.18), are not raising operators of uq(n') as the notation might suggest. 
In fact, they are expressed exclusively in terms of weight and lowering generators. 

(2)  The lowering operators considered here coincide with those introduced by 
Ueno ef af (1989). In fact, the latter use (3.25a), (3.28), and (3.31a) to inductively 
define lowering operators, then prove that (3.8) and (3.9) (ie. our defining relations 
for lowering operators) are satisfied by such operators. Equation (3.16) therefore 
gives an explicit solution to the Ueno et a1 recursion relations. 

We conclude the present section by listing the lowering and raising operators 
found for some small n values: 

742): 

4 3 ) :  

L: = E: R: = Et  (3.32) 

L3 ' - - E' 31  C 12 ]  + E:E:q-E"/2 = 4 '1' 1 1 2  E ]E:  + q-E12/2E:Ei ( 3 . 3 3 ~ )  
L i  = E: (3.33b) 
R: = E: (3.3%) 

E; = E:[Czl] + El E: = q-'/'[Cn] El + E: E: (3.3%) 

uq(4 ) :  
1 E3 -Ell /Z 1 2 3 -(C12+&t,/Z [&id + EzE3E4q L: = E~[&l[&i31+ E!E~q-"12/2[431 + E3 44 

= 4[~121['%31E: + 4 11'2 4 - W 2 [ , q 3 ] ~ 4 2 ~ ;  

+ q1/2[Clz]q--%/2E3E1 4 3 + 4  - ( ~ ! Z ~ & ) / ~ E ~ E ~ E I  4 3 2  (3.34a) 

L: = E;[C2,,] + E:Eiq-En/z = q1I2[&]E; + q-EU/2ElE: (3.346) 
L: = E,' (3.344 
Rf = E: (3.34d) 

(3.344 = E;[&,,] + E: E; = q-'/2[C21] E: + EiE: 

@ = E~[&31][C32] + q ' /*E~Ef[E3 , ]  + E,ZE$,1] t E:E~.l$q-"'/2 

= q-1 [&31] [E32]E~+ [ G J E f E :  + q - ' / 2 [ & ] E ~ E ~  + q - E " ~ Z E 4 E 1 E Z  1 2 3 '  

(3.34f) 
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4. Normalization of the raising and lowering operators 

'Ib completely characterize the lowering and raising opera" just constructed, it 
remains to give the normalization coefficients appearing in equations (3.9) and (3.12). 
The former were already calculated by Ueno er a1 (1989), while the latter can be 
determined from them by using the following symmetry relation: 

Lemma 4.1. The normalization coefficients of the raising operators are related with 
those of the lowering ones by the equation 

Proof. From (3.9), (3.16~) and the Hermitian conjugate of (3.6c), it results that 

By proceeding in the same way for the raising generators, we get 

(4.3) 

Equation (2.11), combined with the fact that NJ;-6,m can be expressed in terms of 
q-numbers (Ueno er a1 1989) and is therefore invariant under q -+ q- l ,  then directly 
leads to (4.1). 0 

Hence we conclude that: 

Theorem 4.2. The normalization coefficients NJ;-6;, and N:;t6,m of (3.9) and (3.12) 
are given by 

n-1 m-1 
]1'2 (4.44 

i=l i= l  

where rni is defined in (3.21). 

The normalized raising and lowering operators can now be used to go from one 
semi-maximal state to another. In general this can be achieved along various paths. 
The following lemma proves their equivalence. 
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Lemma 4.3. The lowering and raising operators, defined in (3.16) and (3.17) 
respectively, satisfy the relations 

1 < m < m' < n .  (4.5) 

Proof. By starting from (4.2) and using (3.16~) for L:' as well as the q-commutation 
relations of section 2, one easily obtains 

(4.6) 

A similar calculation for 

Ti + 6;, hi + ai,, ) 
leads to the same result, thus proving the first part of (4.5). The remaining parts can 

0 be demonsrated in a similar way. 

Remark. (1) As in the U(.) case, one has 

(2) The first part of the lemma, relative to the lowering operators, was already 

By using lemma 4.3, we now obtain: 

stated by Ueno ef ui (1989). 

Lemma 4.4. Any semi-maximal state 1:;) can be expressed in terms of any other 
one 14; ) as 

(4.8) 

where the operators OF:, m = 1,. . . ,a - 1, are defined by 

( L ; ) r m - L  if rk < r,,, 

[ (R,) L -rm if rk > r ,  

0.': 1 if rk = r, (4.9) 

'1 PZ.. , P. - I and N,,,, , 
operators Or?. 

is a normalization coefficient independent of the order of the 
1 2 . . . T n - 1  

m 
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Remark. The normalization coefficient in (4.8) satisfies the relation 

(4.10) 

for any T;, 6 , .  . . , r ie l  such that either .', < rk < r ,  or 8, T; 2 r,, 
l $ m < n .  

The following lemma gives the value of this normalization coefficient in two 
important special cases. 

Lemma 4.5. The general normalization coefficients of the lowering and raising 
operators are given by 

[ r i - h j + j - i - l ] !  'Iz 11 
where 6 < vi, i = 1 , .  . . , n - 1, and 

(4.11) 

where 6 2 vi, i = 1 , .  . . , n - 1, respectively. 

Remark. In particular, for rc = hi, equation (4.11) becomes 
n-I [hi  - T j  + j - i]! [hi - hj  + j - i - l]! 

[ri - h .  + j - i- l]! 
J 

(4.13) 

This result coincides with the coefficient ( ~ , , ( p ~ - ~ , p ~ ) ) " ~  of Ueno et a1 (1989). 

The construction of the GT basis from its highest-weight state, given in 
proposition 7 of Ueno er a1 (1989), now appears as a special case of (4.8), successively 
applied to u,(n), up(n - l ) ,  . . . ,u,(2). For completeness, we state their result in 
the notations used in the present paper. 

Theorem 4.6. Any GT basis vector Ihii) belonging to the carrier space of a u,(n) 
irrep [h,h, . . . h,] can be obtained from the highest-weight state I k,) as 

(4.14) 

where the lowering operators are deEned in (3.16) and the normalization coefficients 
in (4.13). 
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Remark. Note that in (4.14) the lowering operators belonging to distinct q- 
subalgebras of uq(n) are to be maintained in the order indicated. 

5. Conclusion 

In the present paper, we found an explicit solution to the recursion relations (3.250), 
(3.28) and (3.31~) for the u,(n) 3 u,(n - 1) lowering operators, first proposed 
by Ueno ef af (1989), and solved a similar problem for the corresponding raising 
operators, which were not considered by these authors. Our main results are 
contained in (3.16) and (3.17). Some special cases, corresponding to small n values, 
are given in (3.32)-(3.34). 

The expressions found for the u,(n) 3 U (n - 1) lowering and raising operators 
enable one to construct the GT basis vectors m explicit form whenever required, e.g. 
when dealing with applications of u9( n) to some physical models. Equation (3.33), 
for instance, was already used to determine a q-boson realization of the GT bask for 
an arbitrary u9(3) two-row irrep (Quesne 1991). 

Y 

Appendix. Calculation of the q-commutators [E:'*, ELf'],. for p < T 

The purpose of this appendix is to prove by-a double induction over p and P the 
results for [E:'tp, Eitr19,, p < P, given in column 3 of table 1 for the values of a 
listed in column 2 of the latter. As a starting point corresponding to p = T = 1, we 
use (2.2a), as well as (2Q) for p = 2. 

For p = 1 and arbitrary values of r > 1, rows 3, 5 and 8 of table 1 disappear, 
while the results listed in rows 2 and 9 result from definition (2.6~) and from (27) 
and (2.12a), respectively. Next, the results in rows 1, 4, 7 and 10 are demonstrated 
by induction over r with the help of (2.120) and (2.10) where a = 1, b = c = 0; 
a = 1, b = 0, c = -1; a = 1, b = -1, c = 0; and a = 1, b = c = 0, respectively. 
The corresponding starting values of r are P = 1, P = 2, r = 2, and P = 1. 

Finally, consider the result in row 6. Its proof is more involved and is based on 
the fact that the equation 

(l+q-l)[Eitl,E,kt'] = O  k < i < i + l < k + r  ( A 9  

[E;+',E;+']q-2 = - - 1 k 192 k < i < i + l <  I C +  r (A21 1 p ; t 1  Ekt" 

is equivalent to 

as it is easily shown by expanding all the q-commutators. Equation (A2) is now 
demonstrated as follows: 

k < i < i + l < k + r .  
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In the first step, we used (2.12a), in the second (2.10) with a = b = 1, c = -1, and 
the results in rows 4 and 9, in the thud (2.6a), and in the fourth (2.10) with a = 1, 
b = c = -1, (27)  and (2.12n), as well as the result in row 7. 

Going now to arbitray p and r values such that 1 < p < T ,  we first note that the 
result in row 5 is obvious, while those in rows 2 and 9 directly follow from (2.124 
and (2.7). The demotlstration of the results in rows 1,4,7 and 10 by induction over p 
and of that in row 6 are similar to the corresponding proofs for the case 1 = p < r. 
Finally, for the case in row 3 (and similarly for that in row S), we obtain 

= - ( q ' / 2  - Q- I / ~ ) E V E ' + P  k i < IC < i + p  < IC + r (A4) 

where in the first step we used (2.12a), in the second (210) with a = 1, b = c = -1, 
(2.7), (2.12a), and the result in row 7, and in the thud the result in row 6. This 
completes the proof of the q-commutation relations listed in column 3 of table 1. 
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